
urlwatch
Release 2.24

Mar 04, 2022

Contents

1 The Handbook 3
1.1 Introduction . 3
1.2 Dependencies . 5
1.3 Jobs . 6
1.4 Filters . 8
1.5 Configuration . 16
1.6 Reporters . 18
1.7 Advanced Topics . 24
1.8 Deprecated Features . 29
1.9 Migration from 1.x . 30

2 Indices and tables 31

i

ii

urlwatch, Release 2.24

_ _ _ ____
_ _ _ __| |_ ____ _| |_ ___| |__ |___ \

| | | | '__| \ \ /\ / / _` | __/ __| '_ \ __) |
| |_| | | | |\ V V / (_| | || (__| | | | / __/
__,_|_| |_| _/_/ __,_|_____|_| |_| |_____|

... monitors webpages for you

urlwatch is intended to help you watch changes in webpages and get notified (via e-mail, in your terminal or through
various third party services) of any changes. The change notification will include the URL that has changed and a
unified diff of what has changed.

1. Run urlwatch once to migrate your old data or start fresh

2. Use urlwatch --edit to customize your job list (this will create/edit urls.yaml)

3. Use urlwatch --edit-config if you want to set up e-mail sending

4. Add urlwatch to your crontab (crontab -e) to monitor webpages periodically

The checking interval is defined by how often you run urlwatch. You can use e.g. crontab.guru to figure out the
schedule expression for the checking interval, we recommend not more often than 30 minutes (this would be */30 *
* * *). If you have never used cron before, check out the crontab command help.

On Windows, cron is not installed by default. Use the Windows Task Scheduler instead, or see this StackOverflow
question for alternatives.

Contents 1

https://travis-ci.org/thp/urlwatch
https://badge.fury.io/py/urlwatch
https://crontab.guru
https://www.computerhope.com/unix/ucrontab.htm
https://en.wikipedia.org/wiki/Windows_Task_Scheduler
https://stackoverflow.com/q/132971/1047040
https://stackoverflow.com/q/132971/1047040

urlwatch, Release 2.24

2 Contents

CHAPTER 1

The Handbook

1.1 Introduction

urlwatch monitors the output of webpages or arbitrary shell commands.

Every time you run urlwatch, it:

• retrieves the output and processes it

• compares it with the version retrieved the previous time (“diffing”)

• if it finds any differences, generates a summary “report” that can be displayed or sent via one or more methods,
such as email

1.1.1 Jobs

Each website or shell command to be monitored constitutes a “job”.

The instructions for each such job are contained in a config file in the YAML format, accessible with the urlwatch
--edit command. If you get an error, set your $EDITOR (or $VISUAL) environment variable in your shell with a
command such as export EDITOR=/bin/nano.

Typically, the first entry (“key”) in a job is a name, which can be anything you want and helps you identify what
you’re monitoring.

The second key is one of either url, navigate or command:

• url retrieves what is served by the web server,

• navigate handles more web pages requiring JavaScript to display the content to be monitored, and

• command runs a shell command.

You can then use optional keys to finely control various job’s parameters.

Finally, you often use the filter key to select one or more filters to apply to the data after it is retrieved, to:

3

https://yaml.org/spec/

urlwatch, Release 2.24

• select HTML: css, xpath, element-by-class, element-by-id, element-by-style,
element-by-tag

• make HTML more readable: html2text, beautify

• make PDFs readable: pdf2text

• make JSON more readable: format-json

• make iCal more readable: ical2text

• make binary readable: hexdump

• just detect changes: sha1sum

• edit text: grep, grepi, strip, sort

These filters can be chained. As an example, after retrieving an HTML document by using the url key, you can extract
a selection with the xpath filter, convert this to text with html2text, use grep to extract only lines matching a
specific regular expression, and then sort them:

name: "Sample urlwatch job definition"
url: "https://example.dummy/"
https_proxy: "http://dummy.proxy/"
max_tries: 2
filter:

- xpath: '//section[@role="main"]'
- html2text:

method: pyhtml2text
unicode_snob: true
body_width: 0
inline_links: false
ignore_links: true
ignore_images: true
pad_tables: false
single_line_break: true

- grep: "lines I care about"
- sort:

If you have more than one job, per YAML specifications, you separate them with a line containing only ---.

1.1.2 Reporters

urlwatch can be configured to do something with its report besides (or in addition to) the default of displaying it on
the console, such as one or more of:

• email (using SMTP)

• email using mailgun

• slack

• discord

• pushbullet

• telegram

• matrix

• pushover

4 Chapter 1. The Handbook

https://yaml.org/spec/

urlwatch, Release 2.24

• stdout

• xmpp

Reporters are configured in a separate file, see Configuration.

1.2 Dependencies

Mandatory requirements are required to run urlwatch. Depending on what optional features you want to use, you
might also need to install additional packages – however, those are not needed to run urlwatch.

1.2.1 Mandatory Packages

• Python 3.6 or newer

• PyYAML

• minidb

• requests

• keyring

• appdirs

• lxml

• cssselect

The dependencies can be installed with (add --user to install to $HOME):

python3 -m pip install pyyaml minidb requests keyring appdirs lxml cssselect

1.2.2 Optional Packages

Optional packages can be installed using:

python3 -m pip install <packagename>

Where <packagename> is one of the following:

1.2. Dependencies 5

http://pyyaml.org/
https://thp.io/2010/minidb/
http://python-requests.org/
https://github.com/jaraco/keyring/
https://github.com/ActiveState/appdirs
https://lxml.de
https://cssselect.readthedocs.io

urlwatch, Release 2.24

Feature Python package(s) to install
Pushover reporter chump
Pushbullet reporter pushbullet.py
Matrix reporter matrix_client and markdown2
stdout reporter with color on
Windows

colorama

browser job kind pyppeteer
Unit testing pycodestyle, docutils,
Documentation build Sphinx
beautify filter beautifulsoup4; optional dependencies (for <script> and <style> tags): js-

beautifier and cssbeautifier
pdf2text filter pdftotext and its OS-specific dependencies (see the above link)
ocr filter pytesseract and Pillow and Tesseract OCR)
XMPP reporter aioxmpp
jq filter jq

1.3 Jobs

Jobs are the kind of things that urlwatch can monitor.

The list of jobs to run are contained in the configuration file urls.yaml, accessed with the command urlwatch
--edit, each separated by a line containing only ---. The command urlwatch --list prints the name of
each job, along with its index number (1,2,3,. . .) which gets assigned automatically according to its position in the
configuration file.

While optional, it is recommended that each job starts with a name entry:

name: "This is a human-readable name/label of the job"

1.3.1 URL

This is the main job type – it retrieves a document from a web server:

name: "urlwatch homepage"
url: "https://thp.io/2008/urlwatch/"

Required keys:

• url: The URL to the document to watch for changes

Job-specific optional keys:

• cookies: Cookies to send with the request (see Advanced Topics)

• method: HTTP method to use (default: GET)

• data: HTTP POST/PUT data

• ssl_no_verify: Do not verify SSL certificates (true/false)

• ignore_cached: Do not use cache control (ETag/Last-Modified) values (true/false)

• http_proxy: Proxy server to use for HTTP requests

• https_proxy: Proxy server to use for HTTPS requests

6 Chapter 1. The Handbook

https://github.com/karanlyons/chump/
https://github.com/randomchars/pushbullet.py
https://github.com/matrix-org/matrix-python-sdk
https://github.com/trentm/python-markdown2
https://github.com/tartley/colorama
https://github.com/pyppeteer/pyppeteer
http://pycodestyle.pycqa.org/en/latest/
https://docutils.sourceforge.io
https://www.sphinx-doc.org/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/jsbeautifier/
https://pypi.org/project/jsbeautifier/
https://pypi.org/project/cssbeautifier/
https://github.com/jalan/pdftotext
https://github.com/madmaze/pytesseract
https://python-pillow.org
https://github.com/horazont/aioxmpp
https://github.com/mwilliamson/jq.py

urlwatch, Release 2.24

• headers: HTTP header to send along with the request

• encoding: Override the character encoding from the server (see Advanced Topics)

• timeout: Override the default socket timeout (see Advanced Topics)

• ignore_connection_errors: Ignore (temporary) connection errors (see Advanced Topics)

• ignore_http_error_codes: List of HTTP errors to ignore (see Advanced Topics)

• ignore_timeout_errors: Do not report errors when the timeout is hit

• ignore_too_many_redirects: Ignore redirect loops (see Advanced Topics)

(Note: url implies kind: url)

1.3.2 Browser

This job type is a resource-intensive variant of “URL” to handle web pages requiring JavaScript in order to render the
content to be monitored.

The optional pyppeteer package must be installed to run “Browser” jobs (see Dependencies).

At the moment, the Chromium version used by pyppeteer only supports macOS (x86_64), Windows (both x86 and
x64) and Linux (x86_64). See this issue in the Pyppeteer issue tracker for progress on getting ARM devices supported
(e.g. Raspberry Pi).

Because pyppeteer downloads a special version of Chromium (~ 100 MiB), the first execution of a browser job
could take some time (and bandwidth). It is possible to run pyppeteer-install to pre-download Chromium.

name: "A page with JavaScript"
navigate: "https://example.org/"

Required keys:

• navigate: URL to navigate to with the browser

Job-specific optional keys:

• wait_until: Either load, domcontentloaded, networkidle0, or networkidle2 (see Advanced
Topics)

As this job uses Pyppeteer to render the page in a headless Chromium instance, it requires massively more resources
than a “URL” job. Use it only on pages where url does not give the right results.

Hint: in many instances instead of using a “Browser” job you can monitor the output of an API called by the site
during page loading containing the information you’re after using the much faster “URL” job type.

(Note: navigate implies kind: browser)

1.3.3 Shell

This job type allows you to watch the output of arbitrary shell commands, which is useful for e.g. monitoring an FTP
uploader folder, output of scripts that query external devices (RPi GPIO), etc. . .

name: "What is in my Home Directory?"
command: "ls -al ~"

Required keys:

• command: The shell command to execute

1.3. Jobs 7

https://github.com/pyppeteer/pyppeteer/issues/155
https://github.com/pyppeteer/pyppeteer

urlwatch, Release 2.24

Job-specific optional keys:

• none

(Note: command implies kind: shell)

1.3.4 Optional keys for all job types

• name: Human-readable name/label of the job

• filter: filters (if any) to apply to the output (can be tested with --test-filter)

• max_tries: Number of times to retry fetching the resource

• diff_tool: Command to a custom tool for generating diff text

• diff_filter: filters (if any) to apply to the diff result (can be tested with --test-diff-filter)

• treat_new_as_changed: Will treat jobs that don’t have any historic data as CHANGED instead of NEW
(and create a diff for new jobs)

• compared_versions: Number of versions to compare for similarity

• kind (redundant): Either url, shell or browser. Automatically derived from the unique key (url,
command or navigate) of the job type

• user_visible_url: Different URL to show in reports (e.g. when watched URL is a REST API URL, and
you want to show a webpage)

1.3.5 Settings keys for all jobs at once

See Job Defaults for how to configure keys for all jobs at once.

1.4 Filters

Filters are currently used in two stages of processing:

• Applied to the downloaded page before diffing the changes (filter)

• Applied to the diff result before reporting the changes (diff_filter)

While creating your filter pipeline, you might want to preview what the filtered output looks like. You can do so by
first configuring your job and then running urlwatch with the --test-filter command, passing in the index (from
--list) or the URL/location of the job to be tested:

urlwatch --test-filter 1 # Test the first job in the list
urlwatch --test-filter https://example.net/ # Test the job with the given URL

The output of this command will be the filtered plaintext of the job, this is the output that will (in a real urlwatch run)
be the input to the diff algorithm.

The filter is only applied to new content, the old content was already filtered when it was retrieved. This means
that changes to filter are not visible when reporting unchanged contents (see Display for details), and the diff
output will be between (old content with filter at the time old content was retrieved) and (new content with current
filter).

Once urlwatch has collected at least 2 historic snapshots of a job (two different states of a webpage) you can use
the command-line option --test-diff-filter to test your diff_filter settings; this will use historic data
cached locally.

8 Chapter 1. The Handbook

urlwatch, Release 2.24

1.4.1 Built-in filters

The list of built-in filters can be retrieved using:

urlwatch --features

At the moment, the following filters are built-in:

• beautify: Beautify HTML

• css: Filter XML/HTML using CSS selectors

• element-by-class: Get all HTML elements by class

• element-by-id: Get an HTML element by its ID

• element-by-style: Get all HTML elements by style

• element-by-tag: Get an HTML element by its tag

• format-json: Convert to formatted json

• grep: Filter only lines matching a regular expression

• grepi: Remove lines matching a regular expression

• hexdump: Convert binary data to hex dump format

• html2text: Convert HTML to plaintext

• pdf2text: Convert PDF to plaintext

• pretty-xml: Pretty-print XML

• ical2text: Convert iCalendar to plaintext

• ocr: Convert text in images to plaintext using Tesseract OCR

• re.sub: Replace text with regular expressions using Python’s re.sub

• reverse: Reverse input items

• sha1sum: Calculate the SHA-1 checksum of the content

• shellpipe: Filter using a shell command

• sort: Sort input items

• remove-duplicate-lines: Remove duplicate lines (case sensitive)

• strip: Strip leading and trailing whitespace

• xpath: Filter XML/HTML using XPath expressions

• jq: Filter, transform and extract values from JSON

1.4.2 Picking out elements from a webpage

You can pick only a given HTML element with the built-in filter, for example to extract <div id="something">.
../<div> from a page, you can use the following in your urls.yaml:

url: http://example.org/idtest.html
filter:

- element-by-id: something

Also, you can chain filters, so you can run html2text on the result:

1.4. Filters 9

https://en.wikipedia.org/wiki/ICalendar

urlwatch, Release 2.24

url: http://example.net/id2text.html
filter:

- element-by-id: something
- html2text

1.4.3 Chaining multiple filters

The example urls.yaml file also demonstrates the use of built-in filters, here 3 filters are used: html2text, line-grep and
whitespace removal to get just a certain info field from a webpage:

url: https://example.net/version.html
filter:

- html2text
- grep: "Current.*version"
- strip

1.4.4 Extracting only the <body> tag of a page

If you want to extract only the body tag you can use this filter:

url: https://example.org/bodytag.html
filter:

- element-by-tag: body

1.4.5 Filtering based on an XPath expression

To filter based on an XPath expression, you can use the xpath filter like so:

url: https://example.net/xpath.html
filter:

- xpath: /html/body/marquee

This filters only the <marquee> elements directly below the <body> element, which in turn must be below the
<html> element of the document, stripping out everything else.

See Microsoft’s XPath Examples page for some other examples. You can also find an XPath of an <html> node in
the Chromium/Google Chrome developer tools by right clicking on the node and selecting copy XPath.

1.4.6 Filtering based on CSS selectors

To filter based on a CSS selector, you can use the css filter like so:

url: https://example.net/css.html
filter:

- css: ul#groceries > li.unchecked

This would filter only <li class="unchecked"> tags directly below <ul id="groceries"> elements.

Some limitations and extensions exist as explained in cssselect’s documentation.

10 Chapter 1. The Handbook

https://www.w3.org/TR/1999/REC-xpath-19991116/
https://msdn.microsoft.com/en-us/library/ms256086(v=vs.110).aspx
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://cssselect.readthedocs.io/en/latest/#supported-selectors

urlwatch, Release 2.24

1.4.7 Using XPath and CSS filters with XML and exclusions

By default, XPath and CSS filters are set up for HTML documents. However, it is possible to use them for XML
documents as well (these examples parse an RSS feed and filter only the titles and publication dates):

url: https://example.com/blog/xpath-index.rss
filter:

- xpath:
path: '//item/title/text()|//item/pubDate/text()'
method: xml

url: http://example.com/blog/css-index.rss
filter:

- css:
selector: 'item > title, item > pubDate'
method: xml

- html2text: re

To match an element in an XML namespace, use a namespace prefix before the tag name. Use a : to separate the
namespace prefix and the tag name in an XPath expression, and use a | in a CSS selector.

url: https://example.net/feed/xpath-namespace.xml
filter:

- xpath:
path: '//item/media:keywords/text()'
method: xml
namespaces:

media: http://search.yahoo.com/mrss/

url: http://example.org/feed/css-namespace.xml
filter:

- css:
selector: 'item > media|keywords'
method: xml
namespaces:

media: http://search.yahoo.com/mrss/
- html2text

Alternatively, use the XPath expression //*[name()='<tag_name>'] to bypass the namespace entirely.

Another useful option with XPath and CSS filters is exclude. Elements selected by this exclude expression are
removed from the final result. For example, the following job will not have any <a> tag in its results:

url: https://example.org/css-exclude.html
filter:

- css:
selector: body
exclude: a

1.4.8 Limiting the returned items from a CSS Selector or XPath

If you only want to return a subset of the items returned by a CSS selector or XPath filter, you can use two additional
subfilters:

• skip: How many elements to skip from the beginning (default: 0)

• maxitems: How many elements to return at most (default: no limit)

1.4. Filters 11

https://www.w3.org/TR/xml-names/

urlwatch, Release 2.24

For example, if the page has multiple elements, but you only want to select the second and third matching element
(skip the first, and return at most two elements), you can use this filter:

url: https://example.net/css-skip-maxitems.html
filter:

- css:
selector: div.cpu
skip: 1
maxitems: 2

Dealing with duplicated results

If you get multiple results on one page, but you only expected one (e.g. because the page contains both a mobile and
desktop version in the same HTML document, and shows/hides one via CSS depending on the viewport size), you can
use maxitems: 1 to only return the first item.

1.4.9 Filtering PDF documents

To monitor the text of a PDF file, you use the pdf2text filter. It requires the installation of the pdftotext library and any
of its OS-specific dependencies.

This filter must be the first filter in a chain of filters, since it consumes binary data and outputs text data.

url: https://example.net/pdf-test.pdf
filter:

- pdf2text
- strip

If the PDF file is password protected, you can specify its password:

url: https://example.net/pdf-test-password.pdf
filter:

- pdf2text:
password: urlwatchsecret

- strip

1.4.10 Dealing with CSV input

csv2text filter can be used to turn CSV data to a prettier textual representation. This is done by supplying a for-
mat_string which is a [python format string](https://docs.python.org/3/library/string.html#format-string-syntax). If
the CSV has a header, the format string should use the header names (lowercased). Example:

Name | Company |

|–|–| | Smith | Initech | | Doe | Initech |

Format string for the above CSV: Mr {name} works at {company} (Note the lowercase). If there is no header row, you
will need to use the numeric array notation: Mr {0} works at {1}. You can also use numeric array on CSV with headers
with the flag ignore_header. has_header can be used to force use the first line or first ignore the first line as header,
otherwise [csv.Sniffer](https://docs.python.org/3/library/csv.html#csv.Sniffer) would be used.

12 Chapter 1. The Handbook

https://github.com/jalan/pdftotext/blob/master/README.md#pdftotext
https://github.com/jalan/pdftotext/blob/master/README.md#os-dependencies
https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/csv.html#csv.Sniffer

urlwatch, Release 2.24

1.4.11 Sorting of webpage content

Sometimes a web page can have the same data between comparisons but it appears in random order. If that happens,
you can choose to sort before the comparison.

url: https://example.net/sorting.txt
filter:

- sort

The sort filter takes an optional separator parameter that defines the item separator (by default sorting is line-
based), for example to sort text paragraphs (text separated by an empty line):

url: http://example.org/paragraphs.txt
filter:

- sort:
separator: "\n\n"

This can be combined with a boolean reverse option, which is useful for sorting and reversing with the same
separator (using % as separator, this would turn 3%2%4%1 into 4%3%2%1):

url: http://example.org/sort-reverse-percent.txt
filter:

- sort:
separator: '%'
reverse: true

1.4.12 Reversing of lines or separated items

To reverse the order of items without sorting, the reverse filter can be used. By default it reverses lines:

url: http://example.com/reverse-lines.txt
filter:

- reverse

This behavior can be changed by using an optional separator string argument (e.g. items separated by a pipe (|)
symbol, as in 1|4|2|3, which would be reversed to 3|2|4|1):

url: http://example.net/reverse-separator.txt
filter:

- reverse: '|'

Alternatively, the filter can be specified more verbose with a dict. In this example "\n\n" is used to separate para-
graphs (items that are separated by an empty line):

url: http://example.org/reverse-paragraphs.txt
filter:

- reverse:
separator: "\n\n"

1.4.13 Watching Github releases and Gitlab tags

This is an example how to watch the GitHub “releases” page for a given project for the latest release version, to be
notified of new releases:

1.4. Filters 13

urlwatch, Release 2.24

url: https://github.com/thp/urlwatch/releases
filter:

- xpath: '(//div[contains(@class,"release-timeline-tags")]//h4)[1]/a'
- html2text: re
- strip

This is the corresponding version for Gitlab tags:

url: https://gitlab.com/chinstrap/gammastep/-/tags
filter:

- xpath: (//a[contains(@class,"item-title ref-name")])[1]
- html2text

Alternatively, jq can be used for filtering:

url: https://api.github.com/repos/voxpupuli/puppet-rundeck/tags
filter:

- jq: '.[0].name'

1.4.14 Remove or replace text using regular expressions

Just like Python’s re.sub function, there’s the possibility to apply a regular expression and either remove of replace
the matched text. The following example applies the filter 3 times:

1. Just specifying a string as the value will replace the matches with the empty string.

2. Simple patterns can be replaced with another string using “pattern” as the expression and “repl” as the replace-
ment.

3. You can use groups (()) and back-reference them with \1 (etc..) to put groups into the replacement string.

All features are described in Python’s re.sub documentation (the pattern and repl values are passed to this function
as-is, with the value of repl defaulting to the empty string).

url: https://example.com/regex-substitute.html
filter:

- re.sub: '\s*href="[^"]*"'
- re.sub:

pattern: '<h1>'
repl: 'HEADING 1: '

- re.sub:
pattern: '</([^>]*)>'
repl: '<END OF TAG \1>'

If you want to enable certain flags (e.g. re.MULTILINE) in the call, this is possible by inserting an “inline flag”
documented in flags in re.compile, here are some examples:

• re.MULTILINE: (?m) (Makes ^ match start-of-line and $ match end-of-line)

• re.DOTALL: (?s) (Makes . also match a newline)

• re.IGNORECASE: (?i) (Perform case-insensitive matching)

This allows you, for example, to remove all leading spaces (only space character and tab):

url: http://example.com/leading-spaces.txt
filter:

- re.sub: '(?m)^[\t]*'

14 Chapter 1. The Handbook

https://docs.python.org/3/library/re.html#re.sub
https://docs.python.org/3/library/re.html#re.compile

urlwatch, Release 2.24

1.4.15 Using a shell script as a filter

While the built-in filters are powerful for processing markup such as HTML and XML, in some cases you might
already know how you would filter your content using a shell command or shell script. The shellpipe filter allows
you to start a shell and run custom commands to filter the content.

The text data to be filtered will be written to the standard input (stdin) of the shell process and the filter output will
be taken from the shell’s standard output (stdout).

For example, if you want to use grep tool with the case insensitive matching option (-i) and printing only the
matching part of the line (-o), you can specify this as shellpipe filter:

url: https://example.net/shellpipe-grep.txt
filter:

- shellpipe: "grep -i -o 'price: .*'"

This feature also allows you to use sed, awk and perl one-liners for text processing (of course, any text tool that
works in a shell can be used). For example, this awk one-liner prepends the line number to each line:

url: https://example.net/shellpipe-awk-oneliner.txt
filter:

- shellpipe: awk '{ print FNR " " $0 }'

You can also use a multi-line command for a more sophisticated shell script (| in YAML denotes the start of a text
block):

url: https://example.org/shellpipe-multiline.txt
filter:

- shellpipe: |
FILENAME=`mktemp`
Copy the input to a temporary file, then pipe through awk
tee $FILENAME | awk '/The numbers for (.*) are:/,/The next draw is on (.*)./'
Analyze the input file in some other way
echo "Input lines: $(wc -l $FILENAME | awk '{ print $1 }')"
rm -f $FILENAME

Within the shellpipe script, two environment variables will be set for further customization (this can be useful if
you have an external shell script file that is used as filter for multiple jobs, but needs to treat each job in a slightly
different way):

Environment variable Contents
$URLWATCH_JOB_NAME The name of the job (name key in jobs YAML)
$URLWATCH_JOB_LOCATION The URL of the job, or command line (for shell jobs)

1.4.16 Converting text in images to plaintext

The ocr filter uses the Tesseract OCR engine to convert text in images to plain text. It requires two Python modules
to be installed: pytesseract and Pillow. Any file formats supported by Pillow (PIL) are supported.

This filter must be the first filter in a chain of filters, since it consumes binary data and outputs text data.

url: https://example.net/ocr-test.png
filter:

- ocr:
timeout: 5

(continues on next page)

1.4. Filters 15

https://github.com/tesseract-ocr
https://github.com/madmaze/pytesseract
https://python-pillow.org

urlwatch, Release 2.24

(continued from previous page)

language: eng
- strip

The subfilters timeout and language are optional:

• timeout: Timeout for the recognition, in seconds (default: 10 seconds)

• language: Text language (e.g. fra or eng+fra, default: eng)

1.4.17 Filtering JSON response data using jq selectors

The jq filter uses the Python bindings for jq, a lightweight JSON processor. Use of this filter requires the optional jq
Python module to be installed.

url: https://example.net/jobs.json
filter:

- jq:
query: '.[].title'

The subfilter query is optional:

• query: A valid jq filter string.

Supports aggregations, selections, and the built-in operators like length. For more information on the operations
permitted, see the jq Manual.

1.5 Configuration

The global configuration for urlwatch contains basic settings for the generic behavior of urlwatch as well as the
Reporters. You can edit it with:

urlwatch --edit-config

1.5.1 Display

In addition to always reporting changes (which is the whole point of urlwatch), urlwatch by default reports newly-
added (new) pages and errors (error). You can change this behavior in the display section of the configuration:

display:
new: true
error: true
unchanged: false

If you set unchanged to true, urlwatch will always report all pages that are checked but have not changed.

Filter changes are not applied for unchanged

Due to the way the filtered output is stored, unchanged will always report the old contents with the filters at the time
of retrieval, meaning that any changes you do to the filter of a job will not be visible in the unchanged report.
When the page changes, the new filter will be applied.

For this reason, unchanged cannot be used to test filters, you should use the --test-filter command line
option to apply your current filter to the current page contents.

16 Chapter 1. The Handbook

https://stedolan.github.io/jq/
https://github.com/mwilliamson/jq.py
https://github.com/mwilliamson/jq.py
https://stedolan.github.io/jq/manual/

urlwatch, Release 2.24

1.5.2 Reporters

Configuration of reporters is described in Reporters.

Here is an example configuration that reports on standard output in color, as well as HTML e-mail using sendmail:

report:
text:
details: true
footer: true
line_length: 75

html:
diff: unified

email:
enabled: true
method: sendmail
sendmail:

path: /usr/sbin/sendmail
from: 'urlwatch@example.org'
to: 'you@example.org'
html: true
subject: '{count} changes: {jobs}'

stdout:
color: true
enabled: true

Any reporter-specific configuration must be below the report key in the configuration.

Configuration settings like text, html and markdown will apply to all reporters that derive from that reporter (for
example, the stdout reporter uses text, while the email reporter with html: true set uses html).

1.5.3 Job Defaults

If you want to change some settings for all your jobs, edit the job_defaults section in your config file:

job_defaults:
all:
diff_tool: wdiff

url:
ignore_connection_errors: true

The above config file sets all jobs to use wdiff as diff tool, and all url jobs to ignore connection errors.

The possible sub-keys to job_defaults are:

• all: Applies to all your jobs, independent of its kind

• shell: Applies only to shell jobs (with key command)

• url: Applies only to url jobs (with key url)

• browser: Applies only to browser jobs (with key navigate)

See Jobs about the different job kinds and what the possible keys are.

1.5. Configuration 17

urlwatch, Release 2.24

1.6 Reporters

By default urlwatch prints out information about changes to standard output, which is your terminal if you run it
interactively. If running via cron or another scheduler service, it depends on how the scheduler is configured.

You can enable one or more additional reporters that are used to send change notifications. Please note that most
reporters need additional dependencies installed.

See Configuration on how to edit the configuration.

To send a test notification, use the --test-reporter command-line option with the name of the reporter:

urlwatch --test-reporter stdout

This will create a test report with new, changed, unchanged and error notifications (only the ones configured
in display in the Configuration will be shown in the report) and send it via the stdout reporter (if it is enabled).

To test if your e-mail reporter is configured correctly, you can use:

urlwatch --test-reporter email

Any reporter that is configured and enabled can be tested.

If the notification does not work, check your configuration and/or add the --verbose command-line option to show
detailed debug logs.

1.6.1 Built-in reporters

The list of built-in reporters can be retrieved using:

urlwatch --features

At the moment, the following reporters are built-in:

• stdout: Print summary on stdout (the console)

• email: Send summary via e-mail / SMTP

• mailgun: Send e-mail via the Mailgun service

• matrix: Send a message to a room using the Matrix protocol

• mattermost: Send a message to a Mattermost channel

• pushbullet: Send summary via pushbullet.com

• pushover: Send summary via pushover.net

• slack: Send a message to a Slack channel

• discord: Send a message to a Discord channel

• telegram: Send a message using Telegram

• ifttt: Send summary via IFTTT

• xmpp: Send a message using the XMPP Protocol

• prowl: Send a message via prowlapp.com

18 Chapter 1. The Handbook

urlwatch, Release 2.24

1.6.2 Pushover

You can configure urlwatch to send real time notifications about changes via Pushover. To enable this, ensure you have
the chump python package installed (see Dependencies). Then edit your config (urlwatch --edit-config)
and enable pushover. You will also need to add to the config your Pushover user key and a unique app key (generated
by registering urlwatch as an application on your Pushover account.

You can send to a specific device by using the device name, as indicated when you add or view your list of devices in
the Pushover console. For example device: 'MyPhone', or device: 'MyLaptop'. To send to all of your
devices, set device: null in your config (urlwatch --edit-config) or leave out the device configuration
completely.

Setting the priority is possible via the priority config option, which can be lowest, low, normal, high or
emergency. Any other setting (including leaving the option unset) maps to normal.

1.6.3 Pushbullet

Pushbullet notifications are configured similarly to Pushover (see above). You’ll need to add to the config your Push-
bullet Access Token, which you can generate at https://www.pushbullet.com/#settings

1.6.4 Telegram

Telegram notifications are configured using the Telegram Bot API. For this, you’ll need a Bot API token and a chat id
(see https://core.telegram.org/bots). Sample configuration:

telegram:
bot_token: '999999999:3tOhy2CuZE0pTaCtszRfKpnagOG8IQbP5gf' # your bot api token
chat_id: '88888888' # the chat id where the messages should be sent
enabled: true

Messages can be sent silently (silent) if you prefer notifications with no sounds, and monospace formatted
(monospace). By default notifications are not silent and no formatting is done.

telegram:
...
silent: true # message is sent silently
monospace: true # display message as pre-formatted code block

To set up Telegram, from your Telegram app, chat up BotFather (New Message, Search, “BotFather”), then
say /newbot and follow the instructions. Eventually it will tell you the bot token (in the form seen above,
<number>:<random string>) - add this to your config file.

You can then click on the link of your bot, which will send the message /start. At this point, you can use the
command urlwatch --telegram-chats to list the private chats the bot is involved with. This is the chat ID
that you need to put into the config file as chat_id. You may add multiple chat IDs as a YAML list:

telegram:
bot_token: '999999999:3tOhy2CuZE0pTaCtszRfKpnagOG8IQbP5gf' # your bot api token
chat_id:
- '11111111'
- '22222222'

enabled: true

Don’t forget to also enable the reporter.

1.6. Reporters 19

https://pushover.net/
https://pushover.net/apps/build
https://www.pushbullet.com/#settings
https://core.telegram.org/bots

urlwatch, Release 2.24

1.6.5 Slack

Slack notifications are configured using “Slack Incoming Webhooks”. Here is a sample configuration:

slack:
webhook_url: 'https://hooks.slack.com/services/T50TXXXXXU/BDVYYYYYYY/

→˓PWTqwyFM7CcCfGnNzdyDYZ'
enabled: true

To set up Slack, from you Slack Team, create a new app and activate “Incoming Webhooks” on a channel, you’ll get a
webhook URL, copy it into the configuration as seen above.

1.6.6 Mattermost

Mattermost notifications are set up the same way as Slack notifications, the webhook URL is different:

mattermost:
webhook_url: 'http://{your-mattermost-site}/hooks/XXXXXXXXXXXXXXXXXXXXXX'
enabled: true

See Incoming Webooks in the Mattermost documentation for details.

1.6.7 Discord

Discord notifications are configured using “Discord Incoming Webhooks”. Here is a sample configuration:

discord:
webhook_url: 'https://discordapp.com/api/webhooks/11111XXXXXXXXXXX/

→˓BBBBYYYYYYYYYYYYYYYYYYYYYYYyyyYYYYYYYYYYYYYY'
enabled: true
embed: true
subject: '{count} changes: {jobs}'

To set up Discord, from your Discord Server settings, select Integration and then create a “New Webhook”, give the
webhook a name to post under, select a channel, push “Copy Webhook URL” and paste it into the configuration as
seen above.

Embedded content might be easier to read and identify individual reports. subject preceeds the embedded report and
is only used when embed is true.

1.6.8 IFTTT

To configure IFTTT events, you need to retrieve your key from here:

https://ifttt.com/maker_webhooks/settings

The URL shown in “Account Info” has the following format:

https://maker.ifttt.com/use/{key}

In this URL, {key} is your API key. The configuration should look like this (you can pick any event name you want):

20 Chapter 1. The Handbook

https://developers.mattermost.com/integrate/incoming-webhooks/
https://ifttt.com/maker_webhooks/settings

urlwatch, Release 2.24

ifttt:
enabled: true
key: aA12abC3D456efgHIjkl7m
event: event_name_you_want

The event will contain three values in the posted JSON:

• value1: The type of change (new, changed, unchanged or error)

• value2: The name of the job (name key in jobs.yaml)

• value3: The location of the job (url, command or navigate key in jobs.yaml)

These values will be passed on to the Action in your Recipe.

1.6.9 Matrix

You can have notifications sent to you through the Matrix protocol.

To achieve this, you first need to register a Matrix account for the bot on any homeserver.

You then need to acquire an access token and room ID, using the following instructions adapted from this guide:

1. Open Riot.im in a private browsing window

2. Register/Log in as your bot, using its user ID and password.

3. Set the display name and avatar, if desired.

4. In the settings page, select the “Help & About” tab, scroll down to the bottom and click Access Token: <click
to reveal>.

5. Copy the highlighted text to your configuration.

6. Join the room that you wish to send notifications to.

7. Go to the Room Settings (gear icon) and copy the Internal Room ID from the bottom.

8. Close the private browsing window but do not log out, as this invalidates the Access Token.

Here is a sample configuration:

matrix:
homeserver: https://matrix.org
access_token: "YOUR_TOKEN_HERE"
room_id: "!roomroomroom:matrix.org"
enabled: true

You will probably want to use the following configuration for the markdown reporter, if you intend to post change
notifications to a public Matrix room, as the messages quickly become noisy:

markdown:
details: false
footer: false
minimal: true
enabled: true

1.6.10 E-Mail via GMail SMTP

You need to configure your GMail account to allow for “less secure” (password-based) apps to login:

1.6. Reporters 21

https://matrix.org
https://t2bot.io/docs/access_tokens/
https://riot.im/app/

urlwatch, Release 2.24

1. Go to https://myaccount.google.com/

2. Click on “Sign-in & security”

3. Scroll all the way down to “Allow less secure apps” and enable it

You do not want to do this with your primary GMail account, but rather on a separate account that you create just for
sending mails via urlwatch. Allowing less secure apps and storing the password (even if it’s in the keychain) is not
good security practice for your primary account.

Now, start the configuration editor: urlwatch --edit-config

These are the keys you need to configure:

• report/email/enabled: true

• report/email/from: your.username@gmail.com (edit accordingly)

• report/email/method: smtp

• report/email/smtp/host: smtp.gmail.com

• report/email/smtp/auth: true

• report/email/smtp/port: 587

• report/email/smtp/starttls: true

• report/email/to: The e-mail address you want to send reports to

Now, for setting the password, it’s not stored in the config file, but in your keychain. To store the password, run:
urlwatch --smtp-login and enter your password.

1.6.11 E-Mail via Amazon Simple E-Mail Service (SES)

Start the configuration editor: urlwatch --edit-config

These are the keys you need to configure:

• report/email/enabled: true

• report/email/from: you@verified_domain.com (edit accordingly)

• report/email/method: smtp

• report/email/smtp/host: email-smtp.us-west-2.amazonaws.com (edit accordingly)

• report/email/smtp/user: ABCDEFGHIJ1234567890 (edit accordingly)

• report/email/smtp/auth: true

• report/email/smtp/port: 587 (25 or 465 also work)

• report/email/smtp/starttls: true

• report/email/to: The e-mail address you want to send reports to

The password is not stored in the config file, but in your keychain. To store the password, run: urlwatch
--smtp-login and enter your password.

1.6.12 SMTP login without keyring

If for whatever reason you cannot use a keyring to store your password (for example, when using it from a cron job)
you can also set the insecure_password option in the SMTP config:

22 Chapter 1. The Handbook

https://myaccount.google.com/

urlwatch, Release 2.24

• report/email/smtp/auth: true

• report/email/smtp/insecure_password: secret123

The insecure_password key will be preferred over the data stored in the keyring. Please note that as the name
says, storing the password as plaintext in the configuration is insecure and bad practice, but for an e-mail account that’s
only dedicated for sending mails this might be a way. Never ever use this with your your primary e-mail account!
Seriously! Create a throw-away GMail (or other) account just for sending out those e-mails or use local sendmail
with a mail server configured instead of relying on SMTP and password auth.

Note that this makes it really easy for your password to be picked up by software running on your machine, by other
users logged into the system and/or for the password to appear in log files accidentally.

1.6.13 XMPP

You can have notifications sent to you through the XMPP protocol.

To achieve this, you should register a new XMPP account that is just used for urlwatch.

Here is a sample configuration:

xmpp:
enabled: true
sender: "BOT_ACCOUNT_NAME"
recipient: "YOUR_ACCOUNT_NAME"

The password is not stored in the config file, but in your keychain. To store the password, run: urlwatch
--xmpp-login and enter your password.

If for whatever reason you cannot use a keyring to store your password you can also set the insecure_password
option in the XMPP config. For more information about the security implications, see SMTP login without keyring.

1.6.14 Prowl

You can have notifications sent to you through the Prowl push notification service, to recieve the notification on iOS.

To achieve this, you should register a new Prowl account, and have the Prowl application installed on your iOS device.

To create an API key for urlwatch:

1. Log into the Prowl website at https://prowlapp.com/

2. Navigate to the “API Keys” tab.

3. Scroll to the “Generate a new API key” section.

4. Give the key a note that will remind you you’ve used it for urlwatch.

5. Press “Generate Key”

6. Copy the resulting key.

Here is a sample configuration:

prowl:
enabled: true
api_key: '<your api key here>'
priority: 2
application: 'urlwatch example'
subject: '{count} changes: {jobs}'

1.6. Reporters 23

https://prowlapp.com/

urlwatch, Release 2.24

The “subject” field is similar to the subject field in the email, and will be used as the name of the Prowl event. The
application is prepended to the event and shown as the source of the event in the Prowl App.

1.7 Advanced Topics

1.7.1 Adding URLs from the command line

Quickly adding new URLs to the job list from the command line:

urlwatch --add url=http://example.org,name=Example

1.7.2 Using word-based differences

You can also specify an external diff-style tool (a tool that takes two filenames (old, new) as parameter and returns
on its standard output the difference of the files), for example to use GNU wdiff to get word-based differences
instead of line-based difference:

url: https://example.com/
diff_tool: wdiff

Note that diff_tool specifies an external command-line tool, so that tool must be installed separately (e.g. apt
install wdiff on Debian or brew install wdiff on macOS). Coloring is supported for wdiff-style out-
put, but potentially not for other diff tools.

1.7.3 Ignoring connection errors

In some cases, it might be useful to ignore (temporary) network errors to avoid notifications being sent. While there
is a display.error config option (defaulting to true) to control reporting of errors globally, to ignore network
errors for specific jobs only, you can use the ignore_connection_errors key in the job list configuration file:

url: https://example.com/
ignore_connection_errors: true

Similarly, you might want to ignore some (temporary) HTTP errors on the server side:

url: https://example.com/
ignore_http_error_codes: 408, 429, 500, 502, 503, 504

or ignore all HTTP errors if you like:

url: https://example.com/
ignore_http_error_codes: 4xx, 5xx

1.7.4 Overriding the content encoding

For web pages with misconfigured HTTP headers or rare encodings, it may be useful to explicitly specify an encoding
from Python’s Standard Encodings.

url: https://example.com/
encoding: utf-8

24 Chapter 1. The Handbook

https://docs.python.org/3/library/codecs.html#standard-encodings

urlwatch, Release 2.24

1.7.5 Changing the default timeout

By default, url jobs timeout after 60 seconds. If you want a different timeout period, use the timeout key to specify
it in number of seconds, or set it to 0 to never timeout.

url: https://example.com/
timeout: 300

1.7.6 Supplying cookie data

It is possible to add cookies to HTTP requests for pages that need it, the YAML syntax for this is:

url: http://example.com/
cookies:

Key: ValueForKey
OtherKey: OtherValue

1.7.7 Comparing with several latest snapshots

If a webpage frequently changes between several known stable states, it may be desirable to have changes reported
only if the webpage changes into a new unknown state. You can use compared_versions to do this.

url: https://example.com/
compared_versions: 3

In this example, changes are only reported if the webpage becomes different from the latest three distinct states. The
differences are shown relative to the closest match.

1.7.8 Receiving a report every time urlwatch runs

If you are watching pages that change seldomly, but you still want to be notified daily if urlwatch still works, you
can watch the output of the date command, for example:

name: "urlwatch watchdog"
command: "date"

Since the output of date changes every second, this job should produce a report every time urlwatch is run.

1.7.9 Using Redis as a cache backend

If you want to use Redis as a cache backend over the default SQLite3 file:

urlwatch --cache=redis://localhost:6379/

There is no migration path from the SQLite3 format, the cache will be empty the first time Redis is used.

1.7.10 Watching changes on .onion (Tor) pages

Since pages on the Tor Network are not accessible via public DNS and TCP, you need to either configure a Tor client
as HTTP/HTTPS proxy or use the torify(1) tool from the tor package (apt install tor on Debian, brew

1.7. Advanced Topics 25

https://www.torproject.org

urlwatch, Release 2.24

install tor on macOS). Setting up Tor is out of scope for this document. On a properly set up Tor installation,
one can just prefix the urlwatch command with the torify wrapper to access .onion pages:

torify urlwatch

1.7.11 Watching Facebook Page Events

If you want to be notified of new events on a public Facebook page, you can use the following job pattern, replace
PAGE with the name of the page (can be found by navigating to the events page on your browser):

url: http://m.facebook.com/PAGE/pages/permalink/?view_type=tab_events
filter:

- css:
selector: div#objects_container
exclude: 'div.x, #m_more_friends_who_like_this, img'

- re.sub:
pattern: '(/events/\d*)[^"]*'
repl: '\1'

- html2text: pyhtml2text

1.7.12 Only show added or removed lines

The diff_filter feature can be used to filter the diff output text with the same tools (see filters) used for filtering
web pages.

In order to show only diff lines with added lines, use:

url: http://example.com/things-get-added.html
diff_filter:

- grep: '^[@+]'

This will only keep diff lines starting with @ or +. Similarly, to only keep removed lines:

url: http://example.com/things-get-removed.html
diff_filter:

- grep: '^[@-]'

More sophisticated diff filtering is possibly by combining existing filters, writing a new filter or using shellpipe to
delegate the filtering/processing of the diff output to an external tool.

1.7.13 Pass diff output to a custom script

In some situations, it might be useful to run a script with the diff as input when changes were detected (e.g. to start
an update or process something). This can be done by combining diff_filter with the shellpipe filter, which
can be any custom script.

The output of the custom script will then be the diff result as reported by urlwatch, so if it outputs any status, the
CHANGED notification that urlwatch does will contain the output of the custom script, not the original diff. This can
even have a “normal” filter attached to only watch links (the css: a part of the filter definitions):

url: http://example.org/downloadlist.html
filter:

- css: a

(continues on next page)

26 Chapter 1. The Handbook

urlwatch, Release 2.24

(continued from previous page)

diff_filter:
- shellpipe: /usr/local/bin/process_new_links.sh

1.7.14 Setting the content width for html2text (lynx method)

When using the lynx method in the html2text filter, it uses a default width that will cause additional line breaks
to be inserted.

To set the lynx output width to 400 characters, use this filter setup:

url: http://example.com/longlines.html
filter:

- html2text:
method: lynx
width: 400

1.7.15 Comparing web pages visually

To compare the visual contents of web pages, Nicolai has written pyvisualcompare as a frontend (with GUI) to
urlwatch. The tool can be used to select a region of a web page. It then generates a configuration for urlwatch
to run pyvisualcompare and generate a hash for the screen contents.

1.7.16 Configuring how long browser jobs wait for pages to load

For browser jobs, you can configure how long the headless browser will wait before a page is considered loaded by
using the wait_until option. It can take one of four values:

• load will wait until the load browser event is fired (default).

• documentloaded will wait until the DOMContentLoaded browser event is fired.

• networkidle0 will wait until there are no more than 0 network connections for at least 500 ms.

• networkidle2 will wait until there are no more than 2 network connections for at least 500 ms.

1.7.17 Treating NEW jobs as CHANGED

In some cases (e.g. when the diff_tool or diff_filter executes some external command as a side effect that
should also run for the initial page state), you can set the treat_new_as_changed to true, which will make the
job report as CHANGED instead of NEW the first time it is retrieved (and the diff will be reported, too).

url: http://example.com/initialpage.html
treat_new_as_changed: true

This option will also change the behavior of --test-diff-filter, and allow testing the diff filter if only a single
version of the page has been retrieved.

1.7. Advanced Topics 27

https://github.com/nspo/pyvisualcompare

urlwatch, Release 2.24

1.7.18 Monitoring the same URL in multiple jobs

Because urlwatch uses the url/navigate (for URL/Browser jobs) and/or the command (for Shell jobs) key as
unique identifier, each URL can only appear in a single job. If you want to monitor the same URL multiple times, you
can append #1, #2, . . . (or anything that makes them unique) to the URLs, like this:

name: "Looking for Thing A"
url: http://example.com/#1
filter:

- grep: "Thing A"

name: "Looking for Thing B"
url: http://example.com/#2
filter:

- grep: "Thing B"

1.7.19 Running a subset of jobs

To run one or more specific jobs instead of all known jobs, provide the job index numbers to the urlwatch command.
For example, to run jobs with index 2, 4, and 7:

urlwatch 2 4 7

1.7.20 Sending HTML form data using POST

To simulate submitting a HTML form using the POST method, you can pass the form fields in the data field of the
job description:

name: "My POST Job"
url: http://example.com/foo
data:
username: "foo"
password: "bar"
submit: "Send query"

By default, the request will use the HTTP POST method, and the Content-type will be set to application/
x-www-form-urlencoded.

1.7.21 Sending arbitrary data using HTTP PUT

It is possible to customize the HTTP method and Content-type header, allowing you to send arbitrary requests to
the server:

name: "My PUT Request"
url: http://example.com/item/new
method: PUT
headers:
Content-type: application/json

data: '{"foo": true}'

28 Chapter 1. The Handbook

urlwatch, Release 2.24

1.8 Deprecated Features

This page lists the features that are deprecated and steps to update your configuration to use the replacements (if any).

1.8.1 Filters without subfilters (since 2.22)

In older urlwatch versions, it was possible to write custom filters that do not take a subfilter as argument.

If you have written your own filter code like this:

class CustomFilter(filters.FilterBase):
"""My old custom filter"""

__kind__ = 'foo'

def filter(self, data):
...

You have to update your filter to take an optional subfilter argument (if the filter configuration does not have a subfilter
defined, the value of subfilter will be None):

class CustomFilter(filters.FilterBase):
"""My new custom filter"""

__kind__ = 'foo'

def filter(self, data, subfilter):
...

1.8.2 string-based filter definitions (since 2.19)

With urlwatch 2.19, string-based filter lists are deprecated, because they are not as flexible as dict-based filter lists and
had some problems (e.g. : and , are treated in a special way and cannot be used in subfilters easily). If you have a
filter definition like this:

filter: css:body,html2text:re,strip

You can get the same results with a filter definition like this:

filter:
- css:

selector: body
- html2text:

method: re
- strip

Since selector is the default subfilter for css, and method is the default subfilter for html2text, this can also
be written as:

filter:
- css: body
- html2text: re
- strip

If you just have a single filter such as:

1.8. Deprecated Features 29

urlwatch, Release 2.24

filter: html2text

You can change this filter to dict-based using:

filter:
- html2text

1.8.3 keyring setting in SMTP reporter configuration (since 2.18)

Since version 2.18, the SMTP reporter configuration now uses auth to decide if SMTP authentication should be done
or not. Previously, this setting was called keyring. If you have an old configuration like this:

report:
email:
smtp:

host: localhost
keyring: false
port: 25
starttls: true

subject: '{count} changes: {jobs}'

You can change the setting to this (replace keyring with auth):

report:
email:
smtp:

host: localhost
auth: false
port: 25
starttls: true

subject: '{count} changes: {jobs}'

1.9 Migration from 1.x

Migration from urlwatch 1.x should be automatic on first start. Here is a quick rundown of changes in 2.0:

• URLs are stored in a YAML file now, with direct support for specifying names for jobs, different job kinds,
directly applying filters, selecting the HTTP request method, specifying POST data as dictionary and much
more

• The cache directory has been replaced with an SQLite 3 database file “cache.db” in minidb format, storing all
change history (use --gc-cache to remove old changes if you don’t need them anymore) for further analysis

• The hooks mechanism has been replaced with support for creating new job kinds by subclassing, new filters
(also by subclassing) as well as new reporters (pieces of code that put the results somewhere, for example the
default installation contains the “stdout” reporter that writes to the console and the “email” reporter that can
send HTML and text e-mails)

• A configuration file - urlwatch.yaml - has been added for specifying user preferences instead of having to supply
everything via the command line

30 Chapter 1. The Handbook

http://thp.io/2010/minidb/

CHAPTER 2

Indices and tables

• genindex

• search

31

	The Handbook
	Introduction
	Dependencies
	Jobs
	Filters
	Configuration
	Reporters
	Advanced Topics
	Deprecated Features
	Migration from 1.x

	Indices and tables

